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ABSTRACT
The 'H NMR spectra of racemic samples of the
antidepressant drug, bupropion, 1, have been

studied in CDCl; solution at 60 and 200 MHz with

* To whom correspondence should be addressed.
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the achiral lanthanide shift reagent (LSR),
tris(6,6,7,7,8,8,8-heptafluoro~2,2~dimethyl-3,5~
octanedionato)europium (III), 2, and the chiral
reagent, tris[3-(heptafluoropropylhydroxymethyl-
ene) ~d-camphorato]europium(III), 3. Both LSR
produced substantial lanthanide induced shifts
consistent with H assignments, but the bound
complexes of 1 with 2 versus 3 may not be
isostructural. With 3, substantial enantiomeric
shift differences were observed for the t-butyl,
CH,CH, NCH, and the aryl H-2 and H-6 signals, which
should permit potential direct determination of

enantiomeric excess.

INTRODUCTION

Bupropion, 1, 1-(3-chlorophenyl)-2-~[(1,1-

dimethylethyl)amino]-1-propanone, is an
antidepressant of unusual structure, and aspects of
its pharmacolegy and clinical applications, etc.,
have been reviewed (1-4). We were especially
interested in 1 because of the presence of a chiral
center and the potential for the existence of a
pair of enantiomers. Drug enantiomers may differ

from each other in their physiological effects,
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potencies, toxicities, pharmacology, or legal
classification. The determination of enantiomeric
excess has taken on particular importance in recent
years. We have previously employed diverse
complementary techniques investigating potential
methods for direct enantiomeric excess
determination, including HPLC with a chiral
stationary phase (5), and NMR using chiral
solvating agents (CSA) or lanthanide shift reagents
(LSR) (6,7).

The structure and partial structures of 1 bear
similarities to other pharmaceutical systems where
chiral LSR methods may have been applicable for
enantiomeric excess determinations. Thus, 1
possesses an a-methyl-~a-aminocarbonyl moiety
analogous to tocainide (5,8), can be regarded as

structurally related to amphetamines [aryl-C-CHCH,-
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N] or clenbuterol (aryl-C-C-NHt-butyl) (9), and
shares the N-t~butyl secondary amine structure with
clenbuterol. We therefore undertook LSR studies of
1, using the achiral reagent, tris(6,6,7,7,8,8,8-
heptafluoro-2,2~dimethyl-3,5-octanedionato)eurcpium
(IIT), 2, known as Eu(FOD);, and the chiral
reagent, tris[3-(heptafluoropropylhydroxymethyl-
ene) -d-camphorato)europium(III), 3, known as
Eu(HFC); or Eu(HFBC),.
EXPERIMENTAL

Samples of the racemic hydrochloride salt of
1, 1-HCl, were obtained from Burroughs Wellcome
Co., Research Triangle Park, NC 27709 as lot no.
90/0079-004~F. Chloroform-d (99.8 atom % D),
obtained from Aldrich Chemical Corp., Milwaukee, WI
53201 or from Wilmad Glass Co., Buena, NJ 08310,
was dried and stored over 3A Molecular Sieves,
Shift reagents were obtained from Aldrich and were
stored in a desiccator over anhydrous CaSO, or P,0;.
Materials were used as received except as noted.

Samples of the free base 1

were stored under N,
upon isolation from the HCl salt. Solutions were

prepared for NMR analysis and spectra were acquired
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on the same day as the free base was isolated, due
to the apparent instability of 1 (vide infra).
Chemical shifts are reported in § (ppm) relative to
tetramethylsilane (TMS) at 0.00 ppm. For typical
runs with LSR, an accurately weighed portion of
drug was added to CDCl; [containing a trace of TMS
as internal standard] in an oven-dried thin wall
Smm NMR sample tube and dissolved by shaking;
increments of solid shift reagent were added
directly to the sample, dissolved by shaking, and
the spectra immediately obtained. Studies were
performed at 60 MHz on a Varian EM360A 'H NMR
spectrometer with EM3630 lock/decoupler accessory
at 28° with drug concentrations from 0.327 - 0.395
molal. Reported chemical shifts from these runs
are believed accurate to + 0.05 ppm and apparent
{observed) coupling constants to +0.2 Hz. 1In runs
with chiral LSR where enantiomeric shift
differences were observed for selected resonances,
reported chemical shifts are the average valﬁes for
the two enantiomers. In spectra where TMS was
obscured by shift reagent peaks, signals of CHCIl,

(present as an impurity in the solvent) or CH,C],
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(used in extraction of )1 free base) served as
secondary internal standards.

Additional studies were performed with a
Bruker AC200-F Fourier transform NMR spectrometer
with ASPECT 3000 data system for a 'H observe
frequency of 200.13 MHz. These spectra were
cbtained in the FT mode at ambient probe
temperature, using the dual 'H/"C probe. Chemical
shifts were obtained from spectral peak tables.
Coupling constants and enantiomeric shift
differences were determined by subtraction from
peak frequency printouts and are believed accurate
to +0.1 Hz. Typical FT-NMR parameters were as
follows: 4032 Hz spectral width (about -4 to +16
ppm) over 64K data points collected in the
quadrature detection mode for a digital resolution
of 0.123 Hz per point, pulse width 3.0 us, 8.13 s
acquisition time, 1.0 s relaxation delay; 16 FIDs
were accumulated. No line broadening or resolution
enhancement was applied.

Preparation of Free Base of Racemic 1:
In a typical conversion, racemic 1-HCl (681.5

ng, 2.47 mmols) was added to a mixture of 7 ml
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saturated aqueous NaCl, 5 ml H,0 and 170 mg (4.25
mmol) NaOH. The mixture was extracted with CH,Cl,
(5 x 5 ml), the combined organic extracts dried
over anhydrous Na,SO, and the solvent removed on a
rotary evaporator (aspirator pressure, bath
temperature 46°) to yield 562.5 mg of the free base
of 1 (2.35 mmols, 95.1 % recovery) as a slightly
viscous clear yellowish oil which was stored under
N,. Samples of the neat free base appeared to
undergo significant decomposition after a few weeks
of storage at 4° or a few days at ambient
temperature as evidenced by darkening (to an orange
color) and substantial formation of solid which was
largely insoluble in CDCl,. The NMR studies,
therefore, used freshly prepared 1.
RESULTS AND DISCUSSION

The unshifted 'H reference spectrum of 1 was
recorded at 60 MHz as a solution 0.395 m in CDCl,
(with parallel studies at 200 MHz) and showed
signals as follows (6, ppm): 1.06 (9H, s, t-butyl):
1.27 (34, 4, 4 7.08 Hz, CH;); 2.55 (1H, br s, NH);
4.32 (1H, q, 4 7.05 Hz, NCH). The aryl protons

were not fully resolved at 60 MHz, with H~4,S5
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appearing as a multiplet, ca. 7.2 - 7.7 ppm, and H-
2,6 overlapped around 7.8 - 8.1 ppm. The 200 MHz
spectrum clearly separated the H-2,6 pair (7.98
ppm, 1H, br s, H-2), (7.89 ppm, 1H, app. 4, J 7.60
Hz, H-6) with H~-4 appearing as a gross doublet (one
vicinal neighbor) near 7.57 ppm (observed J ca.
7.99 Hz) and H-5 as a gross triplet (two vicinal
neighbors) near 7.47 ppm (observed J ca. 7.79 Hz).
The approximate multiplicities are consistent with
expected values of 33 on an aromatic ring (10):
observed leanings between the multiplets are in
accord with the assignments. Some non-first order
effects remain even at 200 MHz. Results of
incremental addition of the achiral Eu(FOD),, 2,
are summarized in Figure 1. H-4,5 are not resolved
at 60 MHz, even with added 2, and this is reflected
in Fig. 1. Relative lanthanide induced shift (LIS)
magnitudes are in the sequence: NH > NCH > CH,CH >
t-butyl > H-6 > H-2 > H-4,5. The very large LIS
values for NH support major lanthanide binding on
the nitrogen despite expected severe hindrance from
the t-butyl group (9,11,12). O0f the two ortho

protons, H-6 has distinctly larger LIS values than
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Fig. 1. Variation of chemical shift, § (in ppm),
with molar ratio of 2:1, based on 60 MHz data.
Note: Actual chemical shifts for the NH signal have
been divided by two for plotting in this Figure to
remain onscale. Thus, the legend denotes these
points as NH/2.

H-2. We attribute this to a favored conformation
in which the large chlorine atom and H-2 are
proximal to the carbonyl oxygen and distal with
respect to the very bulky t-butylamino alkyl
sidechain. H-6 could then be closer to lanthanide
bound on nitrogen. Very slightly larger LIS values
for H-5 versus H-4 are consistent with H-5 being
nearer to the lanthanide binding site (13). The

above discussion has referred to LSR as primarily
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bound to nitrogen, but we do not rule out the
possibility of contributions from species with a
lanthanide being chelated to the carbonyl oxygen
and to the nitrogen via a favorable five-membered
ring. Such examples of bidentate chelation have
been considered in similar cases (8,9,14).
Contributions from complexes in which LSR is bound
solely to the nitrogen or to the carbonyl may also
be present, in rapid equilibrium. Ordinarily, LSR
is expected to bind much more strongly to an amine
than to a ketone (11,12,15). For multifunctional
substrates like 1, there may well be numerous bound
complexes present.

The chiral LSR, Eu(HFC);, 3, was employed to
elicit enantiomeric shift differences, AA§, of
racemic 1, summarized in Figures 2 and 3,
reflecting results for a series of increments of 3
added to 0.336 m 1, based on 60 MHz data.
Additional studies were subsequently performed at
200 MHz using a different concentration of 1 and a
different batch of 3, to further establish the

robustness of this technique for potential direct

enantiomeric excess determinations of 1. At 60
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Fig. 2. Variation of chemical shift, é§ (in ppm),
with molar ratio of 3:1, based on 60 MHz data.

See Note in caption for Fig. 1.
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Fig. 3. Variation of enantiomeric shift differences

(in Hz, at 60 MHz) with molar ratio of 3:1.
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MHz, AAS was clearly seen for the signals of the t-
butyl, CH,CH, NCH, and aromatic H-2 and H-6 for
3:1 molar ratios of 0.558 or more. At the 3:1
ratio of 0.558, the methyl doublet signals of each
enantiomer, while displaying some lanthanide-
induced broadening, are essentially baseline
resolved, although slightly overlapping the
residual CHCl; signal. The methine proton signal,
NCH, exhibits comparable AAS magnitude to that of
the CH,CH, but broadening is worse for the methine,
and its multiplicity results in poor signal to
noise ratios versus the methyl. Best analytical
potential at 60 MHz is obtained for the t-butyl
signal with a 3:1 molar ratio of 0.884. As seen in
Figure 4, use of the t-butyl as the analytical
marker signal with this level of LSR avoids
overlapping interferences and provides optimal
signal to noise ratio, with valley height between
each enantiomer's signal only 9.4% (of the average
peak heights). Less than 3% of the minor
enantiomer should be detectable under these
conditions,

To verify the applicability of the LSR method

under different conditions, 3 (different batch than
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for the above 60 MHz runs) was added to 0.118 m 1
to bring the chemical shift of H-6 to ca. 9.33 ppm
and the H-2 signal to ca. 8.60 ppm, using the 200
MHz spectrometer. The results (Fig. 4) show
excellent analytical potential, with the valley
height 11.9% of the average peak heights for each
enantiomer for the H-6 signal, and only 8.3% for
the H-2 signal. The H-2 resonance is analytically
superior also because of its higher signal to noise
ratio, since the H-6 signal is appreciably split
into gross doublets by the wvicinal H-5.
Interestingly, using the 200 MHz NMR at this and a
higher 3:1 level did not provide acceptable results
based on the t-butyl, CH.CH or NCH signals, due to
very severe lanthanide induced broadening. Despite
greater AAé magnitudes (in Hz) by a factor of
200/60 with the higher field NMR, actual resolution
of the signals of each enantiomer by the valley
height criterion was much poorer for the t-butyl,
CH,CH and NCH. In contrast, resolution of the H-2
and H-6 signals was dramatically improved at 200
MHz. The main point is that the higher field NMR

may not be assumed a priori to give superior
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results for the signal of a specific nucleus, and
the prediction of actual signal resolution as a
function of NMR field strength may be non-trivial.
There may be numerous mechanisms considered for
lanthanide induced broadening, such as electron
spin relaxation or electron-proton dipole-dipole
interactions (16-18), reduced spin lattice
relaxation time (19), fast-exchange NMR line
broadening with dependence upon bound complex
lifetime (20), and chemical exchange (rather than
shortened T, values, with reduced tumbling rates in
the bound complex more important than the
lanthanide paramagnetism) (21). It has been
pointed out that the line broadening magnitude
could be proportional to the square of the
spectrometer field strength (20, 21, 22). The
worsening of resolution of enantiomer signals with
chiral LSR on going to higher spectrometer field
was in one case ascribed to chemical exchange of
free versus bound substrate (23). The particularly
severe line broadening seen for substrates that
chelate LSRs has been noted (20, 21, 24).

Table 1 presents the values of the slopes of

the plots of chemical shift versus molar ratio of
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LSR:drug for the different protons of 1, based on a
least-squares line fitting. These values were
determined for the linear portions of the plots
using the 60 MHz data of Figs. 1-3. Using
Eu(FOD),, these plots appeared quite linear even at
low 2:1 molar ratios, and the tabulated values
cover 2:1 ratios from zero (unshifted 1) up through
a 2:1 ratio of 0.668. Some non-linearities
(leveling off) occurred at higher molar ratios.
with Eu(HFC);, anomalous low slopes were seen for
the lowest 3:1 ratios used, and experimental points
covering the range of 3:1 molar ratios from 0.113
through 0.671 were employed. {[For H-2 with
Eu(HFC)5, some flattening of the plot was seen even
at 0.671 3:1 ratio, so slope was calculated from
0.113 through 0.558 molar ratio of 3:1.] It has
previously been suggested that a relatively flat
portion of the plots at low LSR levels may reflect
traces of H,0, which competes with the drug
substrate for binding of LSR (25). The generally
higher slope values seen in Table 1 using 3 could
be consistent with a higher binding constant

between 1 and 3 than between 1 and 2, and may
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reflect greater Lewis acidity of 3 than 2. When
the slope values determined with each LSR are
nornalized to the value of the alpha methyl, CH.CH,
modest differences (greater than 10%) are seen for
the normalized value of the t-butyl group. These

latter protons are separated from the nitrogen by

three bonds (as is also true for the CH,CH) and
should not be subject to significant contact shifts
(26,27). The observed differences in the
normalized slopes suggests that the bound complexes
of 1 with 2 versus 1 with 3 may not be
isostructural, and different substrate
conformations may be favored with the different
LSRs (28,29). 1In particular, the lower value for
t-butyl seen with 3 than for 2 may suggest a
conformation of the complex with 3 in which the
bulky t-butyl is more remote from the lanthanide,
potentially due to greater steric interactions with
Eu(HFC); than with Eu(FOD),.
CONCIUSTIONS

The 'H NMR spectra of bupropion, 1, have been
studied with both achiral and chiral LSR. Using

the chiral Eu(HFC);, 3, enantiomeric shift
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differences are seen for the signals of t-butyl,
CH.CH, NCH, H-2 and H-6. Analytical utility for
potential direct determination of enantiomeric
excess of 1 appears practical based on the CH.CH or
(better) the t-butyl signal, with a 60 MHz
spectrometer. With a 200 MHz NMR, the H-2 signal,
followed by the H~6 signal, are the best "marker"
or "reporter" nuclei. Comparative studies of
lanthanide induced shift magnitudes for the achiral
Eu(FOD);, 2, were also performed. Evidence is
presented that the bound complexes with 1 may not
be isostructural for the two LSRs. Results are
interpreted in terms of predominant lanthanide
binding at nitrogen, possibly with bidentate
chelation to the carbonyl of 1.
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